

Manifold Sampling for Composite Nonconvex Nonsmooth Optimization

Kamil Khan, Jeffrey Larson, Matt Menickelly, Stefan Wild

Argonne National Laboratory

August 5, 2019

Problem setup

Nonsmooth, composite optimization

$$\underset{x}{\operatorname{minimize}} f(x) = h(F(x))$$

nonsmooth $h \colon \mathbb{R}^p \to \mathbb{R}$ (with a known structure), smooth $F \colon \mathbb{R}^n \to \mathbb{R}^p$ (expensive to evaluate).

- ▶ Idea: Build p models, one for each component of F. Use model gradients in place of ∇F .
- Requires a manifold representation of h.
- Example: censored loss:

$$f(x) = \sum_{i=1}^{p} |d_i - \max\{c_i, F_i(x)\}|$$

Computers/Simulations!

Computers/Simulations!

Censored ℓ_1 loss

Censored ℓ_1 loss

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

 ρ manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, \dots, p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$ manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$ manifolds

$$h(y) = ||y||_1 = \sum_{i=1}^p |y_i|$$

2^p manifolds

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

 $p \,\, \mathsf{manifolds}$

$$h(y) = ||y||_{\infty} = \max_{i \in \{1, ..., p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$ manifolds

$$h(y) = \|y\|_1 = \sum_{i=1}^p |y_i|$$

2^p manifolds

$$h(y) = \sum_{i=1}^{p} |d_i - \max\{c_i, y_i\}|$$
approximately 3×10^{21} noten

 3^p manifolds. If p = 45,

approximately $3\times 10^{21}\ \text{potential}$ manifolds.

$$h(y) = \max_{i \in \{1, \dots, p\}} y_i$$

p manifolds

$$h(y) = ||y||_{\infty} = \max_{i \in \{1,...,p\}} |y_i|$$

2p manifolds

$$h(y) = \max_{i \in I_1} \{y_i\} - \min_{i \in I_2} \{y_i\}$$

 $|I_1| |I_2|$ manifolds

$$h(y) = ||y||_1 = \sum_{i=1}^{p} |y_i|$$

2^p manifolds

▶
$$h(y) = \sum_{i=1}^{p} |d_i - \max\{c_i, y_i\}|$$
 3^p manifolds. If $p = 45$, approximately 3×10^{21} potential manifolds.

User scripts need to calculate:

$$f(x), F(x), \mathbb{H}(F(x)), \{\nabla h_i(F(x)) : i \in \mathbb{H}(F(x))\}, \{h_i(F(x)) : i \in \mathbb{G}\},$$

$$g^{k} riangleq extbf{proj}\left(0, extbf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extbf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

or

$$\mathbb{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

$$g^{k} riangleq extsf{proj}\left(0, extsf{co}\left(\mathbb{G}^{k}
ight)
ight) \in extsf{co}\left(\mathbb{G}^{k}
ight)$$
 ,

where

$$\mathbb{G}^k \triangleq \bigcup_{i \in I_h(F(x^k))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

or

$$\mathbb{G}^k \triangleq \bigcup_{y \in Y} \bigcup_{i \in I_h(F(y))} \left\{ \nabla M(x^k) \nabla h_i(F(x^k)) \right\}$$

Define the smooth master model $m_k^f : \mathbb{R}^n \to \mathbb{R}$ (with gradient g^k) and obtain step by (approximately) solving

Better trust-region subproblem?

Instead of solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

How about

$$\underset{s}{\text{minimize }} h(M(x^k + s))$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

Better trust-region subproblem?

Instead of solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

How about

For censored ℓ_1 loss:

Manifold Sampling

Manifold Sampling

Manifold Sampling

Better trust-region subproblem?

Instead of solving

minimize
$$m_k^f(x^k + s)$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

How about

minimize
$$h(M(x^k + s))$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

For censored ℓ_1 loss:

minimize
$$\sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}|$$

subject to: $s \in \mathcal{B}(0, \Delta_k)$

Better trust-region subproblem?

Instead of solving

$$\underset{s}{\mathsf{minimize}} \ m_k^f(x^k + s)$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

How about

$$\underset{s}{\text{minimize }} h(M(x^k + s))$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

For censored ℓ_1 loss:

$$\underset{s}{\text{minimize}} \sum_{i=1}^{p} |d_i - \max\{c_i, q_i(x)\}|$$

subject to:
$$s \in \mathcal{B}(0, \Delta_k)$$

Question

Best method for solving composite nonsmooth quadratic problems?

▶ Descent is measured using a linearization $h^{(k)}$ of some selection function \bar{h} and not h

▶ Descent is measured using a linearization $h^{(k)}$ of some selection function \bar{h} and not h

▶ Must ensure information about \bar{h} is in \mathbb{G}^k before taking a step

- ▶ Descent is measured using a linearization $h^{(k)}$ of some selection function \bar{h} and not h
- Must ensure information about \bar{h} is in \mathbb{G}^k before taking a step
- ▶ h^(k) must satisfy

$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and $h^{(k)}(F(x^k+s^k)) \ge h(F(x^k+s^k))$,

▶ Descent is measured using a linearization $h^{(k)}$ of some selection function \bar{h} and not h

- Must ensure information about \bar{h} is in \mathbb{G}^k before taking a step
- ▶ h^(k) must satisfy

$$h^{(k)}(F(x^k)) \le h(F(x^k))$$
 and $h^{(k)}(F(x^k+s^k)) \ge h(F(x^k+s^k))$,

$$\rho_{k} \triangleq \frac{h^{(k)}(F(x^{k})) - h^{(k)}(F(x^{k} + s^{k}))}{m(x^{k}) - m(x^{k} + s^{k})}$$

Convergence

- ▶ If the trust region radius Δ_k is a sufficiently small multiple of the model gradient $||g^k||$, the iteration is guaranteed to be successful.
- \triangleright $\lim_{k\to\infty} \Delta_k = 0$.

- ▶ Some subsequence of master model gradients g^k goes zero.
- Zero is in the generalized Clarke subdifferential of cluster points of any subsequence of iterates with master model gradients converging to zero.
- ▶ The same holds for cluster points of the entire sequence of iterates.

Conclusions

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- F is "hard"

it can be advantageous to model F_i and then combine those models via known information about h.

Conclusions

When optimizing functions of the form h(F(x)) when

- ► h is "easy"
- F is "hard"

it can be advantageous to model F_i and then combine those models via known information about h.

jmlarson@anl.gov

Thank you!

